Interaction between the P14 residue and strand 2 of beta-sheet B is critical for reactive center loop insertion in plasminogen activator inhibitor-2.

نویسندگان

  • D N Saunders
  • L Jankova
  • S J Harrop
  • P M Curmi
  • A R Gould
  • M Ranson
  • M S Baker
چکیده

The molecular interactions driving reactive center loop (RCL) insertion are of considerable interest in gaining a better understanding of the serpin inhibitory mechanism. Previous studies have suggested that interactions in the proximal hinge/breach region may be critical determinants of RCL insertion in serpins. In this study, conformational and functional changes in plasminogen activator inhibitor-2 (PAI-2) following incubation with a panel of synthetic RCL peptides indicated that the P14 residue is critical for RCL insertion, and hence inhibitory activity, in PAI-2. Only RCL peptides with a P14 threonine were able to induce the stressed to relaxed transition and abolish inhibitory activity in PAI-2, indicating that RCL insertion into beta-sheet A of PAI-2 is dependent upon this residue. The recently solved crystal structure of relaxed PAI-2 (PAI-2.RCL peptide complex) allowed detailed analysis of molecular interactions involving P14 related to RCL insertion. Of most interest is the rearrangement of hydrogen bonding around the breach region that accompanies the stressed to relaxed transition, in particular the formation of a side chain hydrogen bond between the threonine at P14 and an adjacent tyrosine on strand 2 of beta-sheet B in relaxed PAI-2. Structural alignment of known serpin sequences showed that this pairing (or the equivalent serine/threonine pairing) is highly conserved ( approximately 87%) in inhibitory serpins and may represent a general structural basis for serpin inhibitory activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunological detection of conformational neoepitopes associated with the serpin activity of plasminogen activator inhibitor type-2.

The physiological roles of plasminogen activator inhibitor-2 (PAI-2) are not yet well understood. Kinetic studies suggest a role in the regulation of plasminogen activator-driven proteolysis in many cell types. This study describes a monoclonal antibody (2H5), which uniquely recognizes neoepitope determinants on PAI-2 appearing after thermodynamic relaxation of the molecule. Enzyme-linked immun...

متن کامل

Serpin reactive center loop mobility is required for inhibitor function but not for enzyme recognition.

One feature that distinguishes all of the inhibitory members of the serpin gene family is the presence of a small uncharged residue at the P14 position of the reactive center loop. In this report we examine the effects of mutations at this position, in the serpin, plasminogen activator inhibitor type 1 (PAI-1). Replacement of the native P14 Thr-333 residue by an Arg (Thr-333-->Arg) resulted in ...

متن کامل

The contribution of the exosite residues of plasminogen activator inhibitor-1 to proteinase inhibition.

The binding of plasminogen activator inhibitor-1 (PAI-1) to serine proteinases, such as tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), is mediated by the exosite interactions between the surface-exposed variable region-1, or 37-loop, of the proteinase and the distal reactive center loop (RCL) of PAI-1. Although the contribution of such interactions to th...

متن کامل

Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1.

XR5118 [(3 Z,6 Z )-6-benzylidine-3-(5-(2-dimethylaminoethyl-thio-))-2-(thienyl)methylene-2,5-dipiperazinedione hydrochloride] can inactivate the anti-proteolytic activity of the serpin plasminogen activator inhibitor-1 (PAI-1), a potential therapeutic target in cancer and cardiovascular diseases. Serpins inhibit their target proteases by the P(1) residue of their reactive centre loop (RCL) form...

متن کامل

Strand 6B deformation and residues exposure towards N-terminal end of helix B during proteinase inhibition by Serpins

UNLABELLED Serine Protease inhibitors (Serpins) like antithrombin, antitrypsin, neuroserpin, antichymotrypsin, protein C-inhibitor and plasminogen activator inhibitor is involved in important biological functions like blood coagulation, fibrinolysis, inflammation, cell migration and complement activation. Serpins native state is metastable, which undergoes transformation to a more stable state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 46  شماره 

صفحات  -

تاریخ انتشار 2001